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A B S T R A C T   

Purpose: Evaluation of a deep learning approach for the detection of meniscal tears and their characterization 
(presence/absence of migrated meniscal fragment). 
Methods: A large annotated adult knee MRI database was built combining medical expertise of radiologists and 
data scientists’ tools. Coronal and sagittal proton density fat suppressed-weighted images of 11,353 knee MRI 
examinations (10,401 individual patients) paired with their standardized structured reports were retrospectively 
collected. After database curation, deep learning models were trained and validated on a subset of 8058 ex
aminations. Algorithm performance was evaluated on a test set of 299 examinations reviewed by 5 musculo
skeletal specialists and compared to general radiologists’ reports. External validation was performed using the 
publicly available MRNet database. Receiver Operating Characteristic (ROC) curves results and Area Under the 
Curve (AUC) values were obtained on internal and external databases. 
Results: A combined architecture of meniscal localization and lesion classification 3D convolutional neural 
networks reached AUC values of 0.93 (95% CI 0.82, 0.95) for medial and 0.84 (95% CI 0.78, 0.89) for lateral 
meniscal tear detection, and 0.91 (95% CI 0.87, 0.94) for medial and 0.95 (95% CI 0.92, 0.97) for lateral 
meniscal tear migration detection. External validation of the combined medial and lateral meniscal tear detection 
models resulted in an AUC of 0.83 (95% CI 0.75, 0.90) without further training and 0.89 (95% CI 0.82, 0.95) 
with fine tuning. 
Conclusion: Our deep learning algorithm demonstrated high performance in knee menisci lesion detection and 
characterization, validated on an external database.   

1. Introduction 

Knee conditions are common in clinical practice and Magnetic 
Resonance Imaging (MRI) is the non-invasive method of choice to depict 
internal joint lesions. MRI detection of meniscal tear correlated to 
arthroscopic findings shows variable diagnostic performances in sys
tematic reviews [1,2,3], with sensitivity, specificity and accuracy 
ranging from respectively 83.0 to 93.3%, 69.0 to 88.4% and 81.0 to 
86.3% medially, and from 62.0 to 79.3%, 88.0 to 95.7% and 77.0 to 
88.8% laterally. Sensitivity and specificity of MRI tear migration are 

respectively of 69% and 94% for notch fragment and 71% and 98% for 
recess fragments [4]. 

Beyond prescription appropriateness, clinically significant diag
nostic errors may impact active patients, with unnecessary interventions 
or treatment delays. The development of automated machine learning 
based tools may assist and increase diagnostic performances of general 
radiologists. Deep learning (DL) models have been proposed in medical 
imaging over recent years for an increasing number of tasks and with 
improving performances, fueled by strong collaborative efforts between 
radiologists and data scientists. Machine learning based knee injuries 
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detection models (usually focused on anterior cruciate ligament (ACL), 
meniscal or cartilage lesions) from MRI imaging have been proposed in 
the literature [5]. Bien et al. [6] used aggregated 2D convolutional 
neural networks (CNN) to detect both general abnormalities and specific 
diagnoses (ACL and meniscal tears) from knee MRI examinations and 
published their dataset, MRNet. Pedoia et al. [7] performed automatic 
segmentation of cartilage and menisci using 2D U-Net architectures, 
followed by automatic detection and severity grading of meniscal and 
cartilage lesion using a 3D CNN. A data challenge organized by the 
French Radiology Society whose goal was to identify a meniscal tear on 
MRI on a given dataset led to 2 published articles by the winning teams 
[8,9]. Finally, Fritz et al. [10] compared musculoskeletal radiologists 
with a deep convolutional neural network-based model for the detection 
of meniscal tears using surgery as standard of reference. 

In the recent literature, these artificial intelligence (AI) applications 
remain mostly experimental and few studies provide external validation 
which could enhance robustness, generalizability and safety of clinical 
implementation of these tools in the assessment of patients in a real- 
world production setting. 

By adding to the literature a well-powered externally validated al
gorithm for the detection and characterization of meniscal tears, our 
study aims to bridging the gap of bringing AI into routine radiologist 
practice. 

2. Materials and methods 

2.1. Database creation 

We retrospectively collected 11,353 knee examinations from 10,401 
adult patients who underwent knee MRI examinations between 2009 
and 2018 from 11 medical imaging centers in Switzerland. Our multi
centric institution has a general consent form signed by each patient to 
allow or refuse retrospective data analysis for research purposes. MRI 
images and reports used for the database were anonymized with 
removal of personal information. Patients under the age of 16 (N = 309) 
and those with a known past knee surgical history (N = 2189) were 
excluded (Fig. 1), leaving 8058 examinations with coronal and sagittal 
proton density (PD) fat suppressed (FS)-weighted images. Images were 
obtained from 13 MRI scanners, distributed mainly among Philips 
Panorama 1 Tesla (54.0%) and Philips Ingenia 3 Tesla (36.3%) equip
ment (Table 1). The content of the corresponding radiological structured 
standardized reports was extracted using Natural Language Processing 
(NLP) algorithms. The population consisted in 48.1% of female and 
51.9% of male patients, with a mean age of 44.8 years (range 16–89) and 
a mean weight of 74.3 kg (range 38–186). 

2.2. Meniscal localization 

A random subset of 1000 examinations was manually annotated by 
two data scientists, trained by a senior radiologist to recognize menisci 
on 50 MR examinations. 3D bounding boxes normalized in the range 
[0,1] were placed around medial and lateral menisci without 

segmentation, using an in-house annotation tool. Using 3D bounding 
boxes instead of more advanced types of annotations (e.g. dense seg
mentations of the menisci) for the meniscal localization task offers 
several advantages: (i) 3D dense segmentation annotations are 
extremely time-consuming to obtain, while drawing a 3D bounding box 
englobing the area of interest is much faster; (ii) Deep learning archi
tectures performing dense segmentations (such as 3D U-Net or V-net) are 
computationally expensive, while predicting 3D bounding box co
ordinates can be achieved using a standard CNN architecture with a 
multi-dimensional output (2 sets of 3 scalar coordinates for each 
bounding box). 

This annotated database was used as a training set for two coronal 
and sagittal CNN-based localization models to extract bounding boxes 
coordinates around both menisci in a given MRI series. Both coronal and 
sagittal CNN-based meniscus localization models contained 4 convolu
tion blocks made of layers of (16,8,16)/(16)/(128,32,32)/ 
(64,128,8,128) and (8)/(64,32,32,8)/(8,16,128)/(8,32) convolution 
kernels, respectively. Each convolution layer was followed by a rectified 
linear unit (ReLU) activation and a batch normalization step. Max
pooling (factor 2) was applied after each convolution block, and global 
average pooling followed by a ReLU activation to output the final 
localization results made of 12 coordinates (2 sets of 3 coordinates 
representing upper-left and lower-right corners for each meniscal 
bounding box). Both coronal and sagittal models were trained using an 
Adam optimizer, L1 regression loss, with an initial learning rate of 1e-5 
and for 41 and 35 epochs, respectively. No dropout was applied for any 
of the networks. No data augmentation techniques have been used 
during the training phase of these networks. 

The performance of the models was evaluated on a test set of 100 
examinations annotated by a musculoskeletal radiologist with 10 years 
of experience. Intersection over Union (IoU) evaluation metric was used 
to measure the localizer model accuracy. Suppose we have two bound
ing boxes denoted by A and B, respectively. Denote |I| = |A

⋂
B| the 

intersection between A and B, and |U| = |A
⋃

B| the union of A and B. 
According to Rezatofighi et al. [11], the IoU is the ratio defined as: 

IoU =
|A
⋂

B|
|A
⋃

B|
=

|I|
|U|

2.3. Meniscal tear detection 

Using an in-house text annotator tool, another random subset of 
2611 examinations was manually labelled from radiological reports by a 
team of 4 trained data scientists trained and assisted by 2 experienced 
(17 and 15 years) radiologists for absence / presence of medial and 
lateral meniscal tear, according to the following key-words: tear, lesion, 
flap, bucket-handle, parrot beak, cleavage, morphology distortion, free 
fragment [12]. This labelled database was used as a training set for a 
bidirectional Gated Recurrent Unit citation Neural Network (GRU)- 
based NLP model [13] to extract keywords and to label the entire 
database. A ten-fold cross validation was used for performance analysis. Fig. 1. Database curation.  

Table 1 
Study population and distribution.  

Statistic Database 

Number of patients 7903 
Female / Male ratio (%) 48.1 / 51.9 
Mean age (years) (range) 43.6 (16–120) 
Mean weight (kg) (range) 74.3 (38–186) 
Total number of examinations 8058 
Number of examinations on Philips Panorama 1 T system (%) 4348 (54.0) 
Number of examinations on Philips Ingenia 3 T system (%) 2929 (36.3) 
Number of examinations on GE ONI MSK Extreme 1.5 T system (%) 392 (4.9) 
Number of examinations on GE Optima MR430s 1.5 T system (%) 330 (4.1) 
Number of examinations on GE Signa Pioneer 3 T system (%) 53 (0.7) 
Number of examinations on GE Signa HDxt 1.5 T system (%) 4 (0.0) 
Number of examinations on SIEMENS Skyra 3 T system (%) 2 (0.0)  
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We then fed the recurrent neural network with word embeddings 
computed with Word2Vec algorithm [14]. Word representations were 
obtained using the Continuous Bag of Words (CBOW) architecture on 
our own reports database. The Bidirectional GRU made a prediction 
after processing each embedded word from the report. NLP model per
formance for medial and lateral meniscal tear detection from reports 
was evaluated by ROC curves, AUC serving as a quantitative perfor
mance indicator. 

Meniscal crops produced by the localization models were resized to a 
common size of 64x64x64 across volumes, and then fed with the NLP 
found labels (both hand annotated and NLP-inferred annotations) into a 
CNN-based, meniscal tear detection model, common for both coronal 
and sagittal series. Both medial and lateral CNN-based meniscal tear 
detection models contained 3 convolution blocks made of layers of 
(32,32,32)/(32,32,32)/(16,64,128) and (32,32,32)/(32,32,32)/ 
(128,32) convolution kernels, respectively. Each convolution layer was 
followed by a ReLU activation and a batch normalization step. Max
pooling (factor 2) was applied after each convolution block, and global 
average pooling followed by a sigmoid activation to output the final 
binary classification result. Both medial and lateral models were trained 
using an Adam optimizer, L1 regression loss, with an initial learning rate 
of 1e-5 and for 21 and 15 epochs, respectively. No dropout was applied 
for any of the networks. No data augmentation techniques have been 
used during the training phase of these networks. Meniscal tear detec
tion pipeline is illustrated in Fig. 2. 

The database (N = 8058) was divided into 3 non-overlapping splits 
for training (N = 6221), validation (N = 1538) and testing (N = 299). 
The meniscal tear detection model’s final results were aggregated within 
examinations using the average prediction scores across sagittal series 
and coronal series. 

The performance of this model was evaluated on a test set of 299 
examinations annotated with an in-house DICOM image annotator tool 
by a team of 5 musculoskeletal (MSK) radiologists, classifying for each 
meniscus the status of presence/absence of tear and migration. Inter
observer variability was calculated using Kappa scores. Mismatches (N 
= 82) were reviewed by 2 MSK radiologists in consensus. Distribution of 
meniscal tears on training/validation sets and on test set are provided in 
Table 2. Demographics statistics between training/validation sets and 
test set are provided in Table 3. 

2.4. Deep learning models interpretation 

To gain some insight into which areas of the image are the most 
discriminative for our meniscal tear detection network, we used a noisy 
perturbation-based model. Gaussian noise was successfully applied to 
overlapping patches within the image. By comparing the prediction 
score from the original image and the ones obtained by the perturbated 
images, we computed a heatmap highlighting areas that influences the 
most the prediction when perturbated. We then applied a simple 
threshold to the resulting heatmap (only keeping values above the 99th 

percentile), as well as a gaussian filter for visual ease. Examples of 
resulting heatmaps can be seen in Fig. 3. 

2.5. Meniscal tear characterization 

Meniscal tear characterization was defined as presence or absence of 
a migrated meniscal fragment. Radiological reports from a random 
subset of 1133 examinations were manually labelled by a team of 4 
trained data scientists and 2 experienced radiologists, according to 
following keywords: free fragment, displaced, migrated, flap, bucket- 
handle. These labels, combined with meniscal crops produced by the 
localization model previously described, were used to feed two CNN- 
based migrated meniscal tears detection models (one for coronal se
ries, and one for sagittal series). 

The medial coronal and sagittal, lateral coronal and sagittal 
meniscal tear characterization models contained 4 convolution blocks 
made of convolution layers of (32,32)/(64,64)/(32,128)/(32,32), 
(32,32)/(32,32,32)/(32,16)/(128,16), (32,32)/(64,64,64)/(16,16)/ 
(64), (32,32)/(64,64)/(32,128)/(32,32) convolution kernels, respec
tively. Each convolution layer was followed by a ReLU activation and a 
batch normalization step. Maxpooling (factor 2) was applied after each 
convolution block, and global average pooling followed by a sigmoid 
activation to output the final binary classification result. The medial 
coronal, medial sagittal, lateral coronal and lateral sagittal meniscal 
tear characterization models were trained using an Adam optimizer, L1 
regression loss, with an initial learning rate of 1e-5 and for 49, 38, 50 
and 50 epochs, respectively. No dropout was applied for any of the 
networks. No data augmentation techniques have been used during the 
training phase of these networks. Meniscal tear characterization 
pipeline is illustrated in Fig. 4. 

Fig. 2. Meniscal tear detection pipeline.  

Table 2 
Descriptive statistics for training/validation and testing sets for tear detection 
and migrated tear characterization.  

Statistic Training and 
validation sets 

Test set 

Number of examinations for meniscal tear 
detection 

7759 299 

Number of annotated examinations (%) – 299 
(100) 

Number of overlapping annotated 
examinations (%) 

– 176 (59) 

Number of medial meniscal tear (%) 2607 (33.6) 171 
(57.2) 

Number of lateral meniscal tear (%) 846 (10.9) 89 
(29.8) 

Number of examinations for meniscal tear 
characterization 

1133 299 

Number of migrated medial meniscal tear (%) 453 (40.2) 77 
(25.8) 

Number of migrated lateral meniscal tear (%) 141 (12.5) 21 (7.0)  
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The database (N = 1432) was divided into 3 non-overlapping groups 
of training (N = 898), validation (N = 235) and testing (N = 299). 
Distribution of migrated meniscal tear on training/validation sets and 
on test set are described in Table 4. 

The models’ final results were aggregated within examinations using 
the average prediction scores across sagittal series and coronal series. At 
last, we combined both the meniscal tear detection and characterization 
pipelines for evaluation on the test set: migration prediction was only 
performed when the prediction score of the meniscal tear detection 
model was above a defined threshold. Sensitivity, specificity and accu
racy of meniscal tear detection and characterization in the radiological 
reports are compared to deep learning performances. 

2.6. Meniscal tear detection external validation 

Our combined CNN meniscal tear detection model was then vali
dated on publicly available MRNet dataset from Bien et al. [6]. This 
database is composed of 1250 knee MRI examinations (1130 subdivided 
into 80/20% splits for training/validation, 120 for testing) annotated by 
3 MSK radiologists. It contains the following sequences: coronal T1 
weighted, coronal T2 FS, sagittal PD weighted, sagittal T2 with fat 
saturation, and axial PD weighted with fat saturation, performed 
exclusively with GE MRs. 

Since no distinction between medial or lateral meniscal tear is 
possible from the available labels in the external database, we merged 
predictions of both our algorithms (medial and lateral menisci) into a 
single global tear prediction. 

Performances of our models were measured using ROC curves and 
AUC values. In addition, we also provide performances after using the 
training set of the MRNet dataset to fine-tune (equivalently, retrain) our 
models on these additional data samples. 

2.7. Statistical analysis 

Performance metrics for the localization models were IoU values and 
their associated standard deviations. Performance metrics for the clas
sification models included AUC, sensitivity, specificity and accuracy 
values as well as their respective confidence intervals. These confidence 
intervals were calculated using bootstrap [15] method with replace
ment. Once the model training processed is performed, successive 
random draws of prediction values of the statistics of interest are used to 
compute its resampled distribution. Quantilized values of that resam
pled distribution for a given α level provide its confidence interval. In 
this work, we used n = 10000 for each confidence interval calculation. 
We would like to stress the fact that the training process is only carried 
out once, and not for each bootstrap sample. 

2.8. Computational tools 

All training experiments were undertaken using the following soft
ware packages: Python 3.6, Keras 2.2.5, Tensorflow 1.15.0, Scikit-learn 
0.22.1, and Numpy 1.19.1. 

In addition, calculations were ran using Amazon Web Service cloud- 
based P3 instances, using customized Intel Xeon processors running at 
2.7 GHz, and NVIDIA Tesla V100 GPUs with 16G of memory. 

Table 3 
Study population and distribution along splits.  

Statistic  Training and 
validation 
sets 

Test set P-value 

Number of 
examinations  

7759 299  

Female / Male ratio 
(%)  

48.1 / 51.9 50.8/ 
49.2  

0.347 

Mean age (years) 
(range)  

43.4 
(16–120) 

47.7 
(16–105)  

<0.001 

Mean weight (kg) 
(range)  

74.3 
(38–186) 

74.5 
(38–178)  

0.732 

Number of 
examinationsper 
manufacturer     

<0.001  

Philips 
Panorama 1 T 
system (%) 

4343 (59.9) 5 (1.7)   

Philips Ingenia 
3 T system (%) 

2643 (34.1) 286 
(95.6)   

GE ONI MSK 
Extreme 1.5 T 
system (%) 

390 (5.0) 2 (0.7)   

GE Optima 
MR430s 1.5 T 
system (%) 

324 (4.2) 6 (2.0)   

GE Signa 
Pioneer 3 T 
system (%) 

53 (0.7)    

GE Signa HDxt 
1.5 T system 
(%) 

4 (0.0)    

SIEMENS Skyra 
3 T system (%) 

2 (0.0)    

Fig. 3. Examples of perturbation-based feature interpretation heatmaps for our meniscal tear detector. Left: the resulting heatmap properly overlaps with a meniscal 
tear. Right: the heatmap doesn’t correspond to a meniscal tear. 
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3. Results 

3.1. Meniscal localization 

The meniscal localization pipeline resulted in IoU values for coronal 
and sagittal series of 0.85 ± 0.12 (lateral) / 0.81 ± 0.15 (medial) and 
0.82 ± 0.15 (lateral) / 0.82 ± 0.15 (medial), respectively (Fig. 5). No 
significant statistical effect has been observed for differences in IoU 
between scanners (Philips Panorama 1 T vs. Philips Ingenia 3 T) or sex. 

3.2. Meniscal tear labels extraction with NLP 

The meniscal tear label NLP extraction model resulted in AUC, 
specificity and sensitivity values for medial/lateral meniscus of 0.99 

(95% CI 0.97, 1.00)/ 0.98 (95% CI 0.97, 1.00), 0.99 (95% CI 0.98, 
1.00)/ 0.99 (95% CI 0.82, 1.00) and 0.99 (95% CI 0.82, 1.00)/ 0.98 
(95% CI 0.82, 1.00), respectively. 

3.3. Meniscal tear detection 

Kappa scores for inter-observer variability regarding presence/ 
absence of tear and migration are reported in Table 5. On the testing set, 
AUC, sensitivity, specificity and accuracy values for medial/lateral 
meniscal tear detection models were 0.93 (95% CI 0.82, 0.95)/0.84 
(95% CI 0.78, 0.89), 0.89 (95% CI 0.84, 0.93)/0.67 (95% CI 0.57, 0.77), 
0.84 (95% CI 0.76, 0.90)/0.88 (95% CI 0.84, 0.92) and 0.87 (95% CI 
0.83, 0.90)/0.82 (95% CI 0.78, 0.86), respectively (Fig. 6). 

Fig. 4. Meniscal tear characterization pipeline.  

Table 4 
Migrated meniscal tears prevalence along splits.  

Statistic Training and 
validation sets 

Test set 

Number of examinations for meniscal tear 
characterization 

1133 299 

Number of migrated medial meniscal tear (%) 453 (40.2) 77 
(25.8) 

Number of migrated lateral meniscal tear (%) 141 (12.5) 21 (7.0)  

Fig. 5. Meniscal localization results. (a-b) Meniscal bounding boxes predictions (blue) compared to hand drawn (yellow) boxes. (c) Box diagram of meniscal 
localization algorithms predictions. 

Table 5 
Inter-annotators Kappa score for all graded items.   

Medial 
meniscus tear 

Lateral 
meniscus tear 

Medial 
meniscus 
migrated tear 

Lateral 
meniscus 
migrated tear 

Kappa 
score 

0.86 (95% CI 
0.83, 0.89) 

0.77 (95% CI 
0.71, 0.93) 

0.83 (95% CI 
0.81, 0.86) 

0.93 (95% CI 
0.91, 0.95)  
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3.4. Meniscal tear characterization 

On the testing set, AUC, sensitivity, specificity and accuracy values 
for medial/lateral meniscal tear migration characterization models were 
0.91 (95% CI 0.87, 0.94)/0.95 (95% CI 0.92, 0.97), 0.80 (95% CI 0.69, 
0.89) /0.57 (95% CI 0.33, 0.80), 0.85 (95% CI 0.80, 0.89)/0.95 (95% CI 
0.93, 0.98) and 0.83 (95% CI 0.79, 0.88)/0.93 (95% CI 0.90, 0.96), 
respectively (Fig. 7). Sensitivity, specificity and accuracy of meniscal 
tear detection and characterization in the radiological reports, 
compared to expert MSK annotators, are presented in Table 6. 

3.5. Meniscal tear detection external validation 

Our full pipeline, including localization and classification models, 
resulted in AUC, sensitivity, specificity and accuracy values for meniscal 
tear detection without/with finetuning of 0.83 (95% CI 0.75, 0.90)/0.89 
(95% CI 0.82, 0.95), 0.77 (95% CI 0.65, 0.88)/0.81 (95% CI 0.69, 0.91), 
0.84 (95% CI 0.75, 0.92) /0.87 (95% CI 0.78, 0.94) and 0.81 (95% CI 
0.73, 0.88) / 0.84 (95% CI 0.78, 0.90), respectively (Fig. 8). 

4. Discussion 

Using a real-world large dataset of adult knee-MRI, our algorithms 
achieved high and stable externally validated performances in detecting 
meniscal tears. According to published literature and confirmed by our 
data, human performances are limited for meniscal fragment detection. 
Our study bridged the gap to clinical routine fueled by strong 

Fig. 6. Meniscal tear detection ROC curves.  

Fig. 7. Meniscal tear characterization ROC curves (left: medial meniscus, right: lateral meniscus).  

Table 6 
First reviewer (radiological report) performances for all graded items.  

First reviewer 
performances 

Sensitivity Specificity Accuracy 

Medial meniscus tear 0.98 (95% CI 
0.96, 1.0) 

0.85 (95% CI 
0.79, 0.90) 

0.92 (95% CI 
0.90, 0.95) 

Lateral meniscus tear 0.75 (95% CI 
0.66, 0.84) 

0.97 (95% CI 
0.95, 0.99) 

0.92 (95% CI 
0.89, 0.95) 

Medial meniscus 
migrated tear 

0.37 (95% CI 
0.27, 0.48) 

0.95 (95% CI 
0.90, 0.98) 

0.71 (95% CI 
0.65, 0.77) 

Lateral meniscus 
migrated tear 

0.27 (95% CI 0.0, 
0.55) 

1.0 (95% CI 1.0, 
1.0) 

0.87 (95% CI 
0.79, 0.95)  
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performances in diagnosing meniscal fragment migration and, as a 
result, supporting useful patient clinical decision. 

With tremendous advances in the field of deep learning in the last 
decade, AI applications focusing on menisci are on the rise and shifting 
progressively and rapidly from automatic segmentation and computer- 
aided detection methods to proof-of-concept meniscal tear classifiers, 
with implementation of AI models in a production clinical setting as a 
near-future perspective. 

Pedoia et al. [7] used knee MRI examinations to evaluate a binary 
meniscal lesion detection task and a severity score classifier using the 
Whole-Organ Magnetic Resonance Imaging Score (WORMS) (mild/ 
moderate versus severe). This proof of concept fully automated deep- 
learning pipeline achieved a sensitivity of 81.98% and a specificity of 
89.81% for meniscal lesion detection with AUC of 0.89 on test set. 
Ground truth was annotation by board-certified radiologists. Dataset 
was smaller than in our study, as they used 1478 examinations with 10 
times augmentation techniques to increase their training set. Their 
population including only subjects at various stages of osteoarthritis and 
after ACL injury and reconstruction does not represent accurately clin
ical routine. 

Teams competing in a data challenge organized by the French 
Radiology Society in 2018 used fast-region CNN [8] or mask-region- 
based CNN [9] to classify menisci between healthy and torn, and cate
gorize orientation and location of tears used as reference standard a 
single annotated sagittal T2 image dataset. The two winning teams ob
tained AUC of 0.94 for the meniscal tear detection task [7] and a 
weighted AUC score of 0.906 for all three tasks [8]. However, meniscal 
tear detection does not rely only on a single sagittal MRI image in a real 
world setting and these results could not be used in clinical practice. 

Bien et al. [6] developed a deep learning model for detecting general 
abnormalities, ACL and meniscal tears using a 1370 knee MRI dataset 
performed with GE scanners. Reference standards labels being majority 
vote of 3 MSK radiologists, their MRNet model achieved sensitivity, 
specificity, accuracy and AUC of respectively 0.710, 0.741, 0.725 and 
0.847 for overall meniscal tear detection in an internal validation test set 
of 120 examinations. Algorithm specificity was lower compared to 
general radiologists (0.892). MRNet was validated externally for ACL 
tear but not for meniscal tear due to lack of available dataset. After fine 
tuning, our model outperforms the performance of the MRNet model on 
his own test database by 4.3% of AUC value. 

More recently, Fritz et al. [10] used a study design flowchart and 

data science methodology similar to ours. Their model showed sensi
tivity, specificity, accuracy and AUC of respectively 84%, 88%, 86%, 
88.2% medially, and 58%, 92%, 84%, 78.1% laterally. They achieved a 
similar specificity but lower sensitivity in comparison with MSK radi
ologists. They did not test the model on external data to fully validate it 
clinically, as described as “best practice’’ in the checklist for AI in 
Medical Imaging published in Radiology: Artificial Intelligence [16]. 

Limitations of our study include meniscal tear labels extraction from 
radiological reports without surgical correlation, but internal validation 
on a subset labelled by expert MSK radiologists and external validation 
advocate for robustness. 

Dataset imbalance may explain the inferior overall performances on 
lateral meniscal tear detection and characterization. A larger amount of 
data including lateral meniscal tear in training dataset may further in
crease model performances laterally. 

Performances of a human reader assisted by the model was not 
performed, but as MSK radiologists noticed some clinically relevant le
sions like meniscal root tears were sometimes overlooked by general 
radiologists, we are confident model assistance could lower error rate in 
radiological report. 

Knee MRI analysis is a complex task and an AI tool solely focused on 
a small subset of all potential internal lesions of the knee is unsure to add 
value to the patient care. Therefore, in our opinion, further work needs 
to be done to cover broader structures analysis of knee components in a 
structured and standardized way before implementing efficiently these 
tools in clinical practice. 

Further studies are also needed on deep learning algorithms inter
pretability to support professional confidence and efficient imple
mentation, but active participation of radiologists in the building of 
these models and strong partnership with data scientists are keys to 
support early adoption in clinical routine. 

5. Conclusions 

Deep learning models can efficiently detect and characterize 
meniscal tears, while maintaining robustness when confronted to 
external data. This opens perspectives for generalization and might 
result in clinical applications as part of a more complex machine 
learning system adding value and augmenting human reading of knee 
MRI. 
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